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The formulae for the free energy, when the driving distributions in Generalized Random
Energy Model (GREM) are of the form Ce−|x |γ for γ ≥ 1 are derived. The large
deviation technique allows the use of different distributions at different levels of the
GREM. As an illustration we consider, in detail, a two level GREM with exponential
and Gaussian distributions. This simple case itself leads to interesting phenomena.
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1. INTRODUCTION

This note is essentially a continuation of Ref. 11. To quickly recall the set up,
we have an integer n ≥ 1 fixed once and for all. For N (≥ n) particle system the
configuration space is �N = {+1,−1}N , also denoted by 2N . For each N , we
have a partition N = k1N + · · · + knN , where each ki N ≥ 1 is an integer. Using
the obvious correspondence 2N = ∏

i 2ki N , we write σ ∈ 2N as σ1σ2 · · · σn where
σi ∈ 2ki N . We think of this �N as an n level tree where the first level nodes
are indexed by σ1 ∈ 2k1N and the second level nodes below σ1 being denoted
by σ1σ2 with σ2 ∈ 2k2N etc. For each level i , we fix a number ai > 0 as weight
for that level. For each i ≥ 1 and each node σ1 · · · σi of the i-th level we fix a
symmetric random variable ξσ1···σi . These random variables are independent. For
a configuration σ ∈ �N the Hamiltonian is given by

HN (σ ) =
∑

1≤i≤n

aiξσ1···σi .
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For β > 0, the partition function is

Z N (β) = 2N Eσ eβ HN (σ ).

where Eσ is expectation with respect to σ when 2N has uniform distribution. In
other words, Z N is simply the sum of all the Gibbs factors eβ HN (σ ). Since our
random variables are symmetric, we omitted the minus sign in the exponent. The
object of interest is the free energy E(β) = limN

1
N log Z N (β).

In Ref. 11, we considered the model when all the random variables ξσ are
identically distributed and are either two sided exponential or Gaussian. Explicit
formulae for E(β) were given when for each i , ki N

N → pi as N → ∞. This involves
as usual, two steps. First is evaluating the rate function for an appropriate sequence
of probabilities and then using Varadhan’s lemma(4,11) to arrive at a variational
formula. (Here we wish to point out that in Proposition 1 at the end of Sec. 2 in
Ref. 11, one has to assume that the sequence {µN } is eventually supported on a
compact set instead of assuming compact support for I .) Second is solving the
variational problem to get an explicit formula. Though the first step could be done
for other distributions, we could not solve the variational problem in Ref. 11. In
Sec. 2, we fill this gap. It is worth noting that non-Gaussian distributions with
exponentially decaying tails were considered in Ref. 9 for REM. A. Bovier and
a referee have drawn our attention to Refs. 1, 2, where a deep and detailed study
of the partition function was carried out—the Gaussian setup in Ref. 2 and more
general Weibull setup in Ref. 1—again in case of REM. For the GREM, we do not
have similar results.

But it is interesting to note that the large deviation technique allows one to
use different driving distribution at different levels. The variational formula for
the free energy still holds good. Explicit formulae, of course, depend on the choice
of distributions. Though we do not have closed form expressions, in general, we
consider two cases as illustration. We discuss two level GREM with exponential
and Gaussian distributions. The resulting formulae exhibit some peculiarities.
Perhaps these should be looked into more seriously. These are all considered in
Sec. 3. Though mathematically it is quite alright to do this, the physics eludes
us. Does this mean we are considering spin glasses where materials of diverse
magnetic susceptibilities are present? We are not sure.

2. I.I.D. CASE

We fix a number γ ≥ 1. In this section we consider an n level GREM where
for the N particle system the random variables ξσ1···σi are i.i.d. having probability
density

φN ,γ (x) = Const. e
− |x |γ

γ Nγ−1 − ∞ < x < ∞,
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More precisely,

φN ,γ (x) = 1

2�
(

1
γ

)

(
γ

N

) γ−1
γ

e
− |x |γ

γ Nγ−1 − ∞ < x < ∞.

Note that φN ,1 is independent of N and is two sided exponential density with
parameter 1. On the other hand, φN ,2 is Gaussian density with mean 0 and variance
N . Of course, γ can be larger than 2 as well.

If we define the map �N = ∏
i 2ki N → R

n by

σ �→
(

ξσ1 (ω)

N
,
ξσ1σ2 (ω)

N
, . . . ,

ξσ1···σn (ω)

N

)

and transport the uniform probability of �N to R
n , we get a probability µN (ω) on

R
n . Proceeding as in Ref. 11, the sequence {µN (ω) : N ≥ n} satisfies, for a.e. ω,

LDP with rate function I given by

I (̃x) =

⎧
⎪⎨

⎪⎩

1

γ

n∑

i=1

|xi |γ if x̃ ∈ 	

∞ otherwise

where

	 =
{

x̃ ∈ R
n :

k∑

i=1

|xi |γ
γ

≤
k∑

i=1

pi log 2, 1 ≤ k ≤ n

}

,

and pi = limN→∞ ki N

N , which is assumed to exist. Again as in Ref. 11, by
Varadhan’s lemma,

lim
N

1

N
log Z N (β) = log 2 − inf

x̃∈	+

n∑

i=1

(
xγ

i

γ
− βai xi

)

,

where 	+ is 	 intersected with the positive orthant of R
n . The case γ = 1 and

γ = 2 are precisely the exponential and Gaussian cases considered in Ref. 11.
Henceforth we assume γ > 1. To evaluate the infimum let us put, for 1 ≤ j ≤
k ≤ n,

B( j, k) =
⎛

⎝ (p j + · · · + pk)γ log 2

a
γ

γ−1

j + · · · + a
γ

γ−1

k

⎞

⎠

γ−1
γ

.

Set r0 = 0 and for l ≥ 0 (integer),

βl+1 = min
k>rl

B(rl + 1, k) rl+1 = max{i > rl : B(rl + 1, i) = βl+1}.

Clearly, for some K with 1 ≤ K ≤ n, we have rK = n. Put β0 = 0 and
βK+1 = ∞. Note that 0 = β0 < β1 < β2 · · · < βK < βK+1 = ∞.
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Fix j ≤ K and let β ∈ (β j , β j+1]. Define x̃ ∈ 	+ as follows:

xi =
{

(βlai )
1

γ−1 if i ∈ {rl−1 + 1, . . . , rl} for some l, 1 ≤ l ≤ j

(βai )
1

γ−1 if i ≥ r j + 1
.

Claim: inf x̃∈	+
∑n

i=1

(
xγ

i

γ
− βai xi

)
occurs at x̃ .

In order to prove the claim, fix any x̃ ∈ 	+. For k ≤ j , first note that, by
Holder’s inequality,

rk∑

i=1

xi x
γ−1
i ≤

(
rk∑

i=1

xγ

i

) 1
γ

(
rk∑

i=1

xγ

i

) γ−1
γ

≤
rk∑

i=1

xγ

i .

where the last inequality follows by observing that x̃ ∈ 	+ so that
∑rk

i=1 xγ

i ≤
∑rk

i=1 γ pi log 2 = ∑rk
i=1 xγ

i . Hence,
∑rk

i=1 xγ−1
i (xi − xi ) ≥ 0.

Since β > β j , we have ( β

βl
− 1) > 0 for 1 ≤ l ≤ j . Moreover since βl are

increasing with l, these numbers ( β

βl
− 1) are decreasing. It follows that,

j∑

l=1

(
β

βl
− 1

) rl∑

i=rl−1+1

xγ−1
i (xi − xi ) ≥ 0.

In other words, using the definition of xi ,
r j∑

i=1

βai (xi − xi ) ≥
r j∑

i=1

xγ−1
i (xi − xi ). (1)

Now,
r j∑

i=1

(
xγ

i

γ
− βai xi

)

−
r j∑

i=1

(
xγ

i

γ
− βai xi

)

=
r j∑

i=1

(
xγ

i

γ
+ βai (xi − xi ) − xγ

i

γ

)

≥
r j∑

i=1

(
xγ

i

γ
+ xγ−1

i (xi − xi ) − xγ

i

γ

)

by (1)

=
r j∑

i=1

(
xγ

i

γ
+ γ − 1

γ
xγ

i − xi x
γ−1
i

)

≥ 0, (2)

where in the last inequality we used xi x
γ−1
i ≤ 1

γ
xγ

i + γ−1
γ

xγ

i .
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On the other hand, utilizing the definition of xi and the inequality βai xi ≤
xγ

i

γ
+ γ−1

γ
(βai )

γ

γ−1 we have,

n∑

i=r j +1

(
xγ

i

γ
− βai xi

)

−
n∑

i=r j +1

(
xγ

i

γ
− βai xi

)

=
n∑

i=r j +1

(
xγ

i

γ
+ γ − 1

γ
(βai )

γ

γ−1 − βai xi

)

≥ 0. (3)

Clearly, (2) and (3) complete proof of the claim. This argument is in fact a
generalization of Dorlas and Dukes, (8) Capocaccia et al. (3)

All this leads to the following explicit formula for the free energy.

Theorem 1. Almost surely,

lim
N

1

N
log Z N (β)

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

n∑

i=r j +1

pi log 2 + γ − 1

γ

n∑

i=r j +1

(βai )
γ

γ−1 + β

j∑

l=1

β
1

γ−1

l

rl∑

i=rl−1+1

a
γ

γ−1

i

if β j < β ≤ β j+1, 0 ≤ j ≤ K − 1

β

K∑

l=1

β
1

γ−1

l

rl∑

i=rl−1+1

a
γ

γ−1

i if β > βK

Observe that for γ = 2 this coincides with the well known formula, originally
appearing as formula (23) in Ref. 7.

3. NON IDENTICALLY DISTRIBUTED CASE

It is worth noting that the LDP holds good even when the driving distributions
at various levels are different. That is, fix numbers γ1, . . . , γn; each at least one
and consider an n level GREM where the driving distribution at the i-th level is
φN ,γi . More precisely, for any node σ1 · · · σi at the i-th level ξσ1···σi has density
φN ,γi . Of course, all the random variables are independent. Define as earlier, the
map �N → R

n by

σ �→
(

ξσ1 (ω)

N
,
ξσ1σ2 (ω)

N
, . . . ,

ξσ1···σn (ω)

N

)

.

Let µN (ω) be the induced probability on R
n when �N is equipped with uniform

probability. The arguments in Ref. 11, with appropriate change, show that for a.e.
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ω, the sequence of probabilities {µN (ω), N ≥ n} on R
n satisfies LDP with rate

function I given by

I (̃x) =

⎧
⎪⎨

⎪⎩

n∑

i=1

|xi |γi

γi
if x̃ ∈ 	

∞ otherwise

where

	 =
{

x̃ ∈ R
n :

k∑

i=1

|xi |γi

γi
≤

k∑

i=1

pi log 2, 1 ≤ k ≤ n

}

,

and, of course pi = lim
N→∞

ki N

N . Let, as earlier, 	+ be the part of 	 in the positive

orthant of R
n . Now we have the following:

Theorem 2. If the driving distribution has density φN ,γi at the i-th level, we have
almost surely,

lim
N

1

N
log Z N (β) = log 2 − inf

x̃∈	+

{
n∑

i=1

(
xγi

i

γi
− βai xi

)}

.

To get a better understanding of this expression, we now specialize to the
case n = 2. The limiting frequencies lim

N

ki N

N are pi for i = 1, 2. The weights for

the two levels are a1 and a2 respectively. We assume p1, p2, a1, a2 are strictly
positive.

(A) Exponential-Gaussian GREM:
In this case we consider the distributions at the first level to be φN ,1 and at

the second level to be φN ,2—that is, exponential and Gaussian respectively. Then
the formula above reads as follows:

E(β) = log 2 − inf

{

f (x, y) : x, y ≥ 0; x ≤ p1 log 2; x + 1

2
y2 ≤ log 2

}

where

f (x, y) = x(1 − βa1) + 1

2
y2 − βa2 y.

If β ≤ 1
a1

, then clearly this function attains its minimum at the point, (0, βa2 ∧
√

2 log 2).
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If β > 1
a1

, here is how to calculate the infimum. The function g(y) =
inf

x
f (x, y) is given by

g(y) =
{

p1(1 − βa1) log 2 + 1
2 y2 − βa2 y for 0 ≤ y ≤ √

2p2 log 2

(1 − βa1) log 2 + 1
2βa1 y2 − βa2 y for

√
2p2 log 2 ≤ y ≤ √

2 log 2

Since the required infimum of f is just the infimum of g(y), one can calculate
it, after some work, by analyzing g in the two intervals separately. This leads to the
following three scenarios. We express E(β) against β as follows. The values below
the line are values of β, where as above the line are of E(β). A phase transition
occurs at the dark lines.

Thus in subcase 1A, the system behaves like a Random Energy Model (REM)
with Gaussian distributions (5) having weight a2, that is, as if HN (σ ) are i.i.d
centered Gaussian with variance a2

2 N . For example, when a1 = a2 then this is
just the standard Gaussian REM. It does not depend on the quantities p1 and p2.
Even when p2 = 0.0001 (very small) the first level exponentials do not show up
in the limit. Further the GREM reduces to a REM. Of course, this is so as long as√

2 log 2 < a2
a1

.
Subcase 3A seems rather peculiar. This is indeed a regular GREM. Imag-

ine placing exponential random variables ξσ1 at the first level and one i.i.d
bunch {ξσ1σ2} is placed below each first level node. In other words, consider
{ησ2 : σ2 ∈ 2k2N } i.i.d N (0, N ) and set ξσ1σ2 = ησ2 for all σ1, σ2. Consider the
corresponding Hamiltonian HN (σ ) = a1ξσ1 + a2ξσ1σ2 = a1ξσ1 + a2ησ2 . Let us set
Z1

N = ∑
σ1

eβa1ξσ1 , the partition function for the k1N -particles system consisting
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of exponential Hamiltonians with weight a1. Let Z2
N = ∑

σ2
ea2ησ2 , the partition

function for k2N particle system consisting of Gaussian, N (0, N ) Hamiltonians
with weight a2. Clearly, Z N = Z1

N · Z2
N . If, for i = 1, 2; Ei = limN

1
N log Zi

N then
the exponential REM formula (10,11) yields,

E1(β) =

⎧
⎪⎪⎨

⎪⎪⎩

p1 log 2 if β ≤ 1

a1

βp1a1 log 2 if β >
1

a1

(4)

The Gaussian REM formula (keeping in mind that for N fixed, the k2N particle
system has N (0, N ) Hamiltonians as opposed to N (0, k2N )) yields,

E2(β) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

p2 log 2 + 1

2
a2

2β
2 if β ≤

√
2p2 log 2

a2

βa2

√
2p2 log 2 if β >

√
2p2 log 2

a2

(5)

One can now verify that,

E(β) = E1(β) + E2(β).

In other words the GREM behaves like sum of two independent REMs, one
exponential and other Gaussian. The word independent is used here in the sense
that there is no interaction between these two REMs—that is, there is no interaction
between the k1N particles and the k2N particles, as if there is a barrier between
these two sets of particles. Of course, this is so as long as a2

a1
<

√
2p2 log 2. This

should be contrasted with subcase 1A where the entire system behaves like an N
particle Gaussian REM.

Finally, coming to subcase 2A, we observe that the free energy up to
1
a1

is given by log 2 + 1
2β2a2

2 . This can be thought of as the Gaussian REM

energy but not going all the way up to β ≤
√

2 log 2

a2
but cut short at 1

a1
. This

can also be thought of as the sum of the two energies E1 and E2 as in (4)
and (5), but then the Gaussian effect is prolonged up to β ≤ 1

a1
instead of

stopping at
√

2p2 log 2

a2
. We do not know which is the correct interpretation.

For β > 1
a1

, the system exhibits a new phenomenon which we are unable to
explain. The term βa1 log 2 is reminiscent of the exponential REM energy for

the N particle system. The other term 1
2β

a2
2

a1
is not reminiscent of anything we know.

(B) Gaussian-Exponential GREM: In this case, we consider the distributions at
the first level to be Gaussian, φN ,2 where as at the second level they are exponential,
φN ,1. As earlier pi and ai correspond to the i-th level. Now, the general formula
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of Theorem 2 reduces to the following:

Ẽ(β) = log 2 − inf

{

f̃ (x, y) : x, y ≥ 0; x ≤
√

2p1 log 2;
1

2
x2 + y ≤ log 2

}

,

where

f̃ (x, y) = 1

2
x2 − βa1x + y(1 − βa2).

Analysis similar to (A), yields the following explicit formula for the free
energy as a function of β. We follow the same convention as mentioned earlier.

Remarks similar to Case (A) apply here as well. The reader should note that to
compare this case with case (A), one should interchange a2 with a1 and p2 with p1

(to maintain the same weights and proportions for the exponential and Gaussian
levels). Subcase 1B is similar to subcase 2A, where as subcase 2B is similar to that
of subcase 3A. In (B), the system never reduces completely to a Gaussian REM
as happened in subcase 1A.

4. CONCLUSIONS

It is observed that the free energy exists in Generalized Random Energy
Models even when the driving distributions are non-Gaussian. The large deviation
technique allows the use of different distributions at different levels. As an illus-
tration, we considered a 2 level GREM. The conclusions of Exponential-Gaussian
GREM differ from those of Gaussian-Exponential. The system may reduce to a
Gaussian REM or to two independent REMs.
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